Bose-Einstein condensation superconductivity induced by disappearance of the nematic state

49Citations
Citations of this article
82Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The crossover from the superconductivity of the Bardeen-Cooper-Schrieffer (BCS) regime to the Bose-Einstein condensation (BEC) regime holds a key to understanding the nature of pairing and condensation of fermions. It has been mainly studied in ultracold atoms, but in solid systems, fundamentally previously unknown insights may be obtained because multiple energy bands and coexisting electronic orders strongly affect spin and orbital degrees of freedom. Here, we provide evidence for the BCS-BEC crossover in iron-based superconductors FeSe1 − xSx from laser-excited angle-resolved photoemission spectroscopy. The system enters the BEC regime with x = 0.21, where the nematic state that breaks the orbital degeneracy is fully suppressed. The substitution dependence is opposite to the expectation for single-band superconductors, which calls for a new mechanism of BCS-BEC crossover in this system.

Cite

CITATION STYLE

APA

Hashimoto, T., Ota, Y., Tsuzuki, A., Nagashima, T., Fukushima, A., Kasahara, S., … Okazaki, K. (2020). Bose-Einstein condensation superconductivity induced by disappearance of the nematic state. Science Advances, 6(45). https://doi.org/10.1126/SCIADV.ABB9052

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free