The study was designed to: (1) Analyze and create protocols of obtaining measurements using the Macular Pigment Reflectometry (MPR). (2) To assess the agreement of MPOD measurements obtained using the heterochromatic flicker photometry (MPS II) and MPR. (3) To obtain the lutein and zeaxanthin optical density obtained using the MPR in the central one-degree of the macula. The measurements were performed using the MPR and heterochromatic flicker photometry. The MPR measurements were performed twice without pupillary dilation and twice following pupillary dilation. The MPR measurements were performed for a 40-s period and the spectrometer signal was parsed at different time points: 10–20, 10–30, 10–40, 20–30, 20–40, and 30–40 s. The MPR analyzes the high-resolution spectrometer signal and calculates MPOD, lutein optical density and zeaxanthin optical density automatically. The MPR-MPOD data was compared with MPPS II-MPOD results. The MPR-MPOD values are highly correlated and in good agreement with the MPS II-MPOD. Of the various parsing of the data, the data 10–30 interval was the best at obtaining the MPOD, lutein, and zeaxanthin values (8–12% coefficient of repeatability). The lutein to zeaxanthin ratio in the central one-degree of the macula was 1:2.40. Dilation was not needed to obtain the MPOD values but provided better repeatability of lutein and zeaxanthin optical density. MPR generates MPOD measurements that is in good agreement with MPS II. The device can produce lutein and zeaxanthin optical density which is not available from other clinical devices.
CITATION STYLE
Davey, P. G., Rosen, R. B., & Gierhart, D. L. (2021). Macular pigment reflectometry: Developing clinical protocols, comparison with heterochromatic flicker photometry and individual carotenoid levels. Nutrients, 13(8). https://doi.org/10.3390/nu13082553
Mendeley helps you to discover research relevant for your work.