Effect of co-doping on thermoelectric properties of n-type Bi2Te3 nanostructures fabricated using a low-temperature sol-gel method

8Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

In this work, a novel low-temperature double solvent sol-gel method was used to fabricate (Sm, Ce, Gd) and (Sn, Se, I) co-doped at Bi and Te-sites, respectively, for Bi2Te3 nanostructures. The phase-purity and high crystallinity of as-synthesized nanostructures were confirmed using X-ray diffraction and high-resolution transmission electron microscopy. The nanopowders were hot-pressed by spark plasma sintering into bulk pellets for thermoelectric properties. The spark plasma sintering temperature significantly affects the Seebeck coefficient and electrical conductivity of bulk Bi2Te3 pellets. The electrical conductivities of co-doped samples decrease with an increase in the temperature, but conversely, the Seebeck coefficient is linearly increasing. The power factor showed that the co-dopants enhanced the thermoelectric properties of Bi2Te3 nanopowders.

Cite

CITATION STYLE

APA

Irfan, S., Din, M. A. U., Manzoor, M. Q., & Chen, D. (2021). Effect of co-doping on thermoelectric properties of n-type Bi2Te3 nanostructures fabricated using a low-temperature sol-gel method. Nanomaterials, 11(10). https://doi.org/10.3390/nano11102719

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free