Network clique cover approximation to analyze complex contagions through group interactions

49Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Contagion processes have been proven to fundamentally depend on the structural properties of the interaction networks conveying them. Many real networked systems are characterized by clustered substructures representing either collections of all-to-all pair-wise interactions (cliques) and/or group interactions, involving many of their members at once. In this work, focusing on interaction structures represented as simplicial complexes, we present a discrete-time microscopic model of complex contagion for a susceptible-infected-susceptible dynamics. Introducing a particular edge clique cover and a heuristic to find it, the model accounts for the higher-order dynamical correlations among the members of the substructures (cliques/simplices). The analytical computation of the critical point reveals that higher-order correlations are responsible for its dependence on the higher-order couplings. While such dependence eludes any mean-field model, the possibility of a bi-stable region is extended to structured populations.

Cite

CITATION STYLE

APA

Burgio, G., Arenas, A., Gómez, S., & Matamalas, J. T. (2021). Network clique cover approximation to analyze complex contagions through group interactions. Communications Physics, 4(1). https://doi.org/10.1038/s42005-021-00618-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free