Abstract
MicroRNAs (miRNAs) have been corroborated to engage in the process of cellular activities in osteoporosis. However, few researches have been conducted to expose the integrated role of miR-497, leucine-rich alpha-2-glycoprotein-1 (LRG1) and transforming growth factor beta 1 (TGF-β1)/Smads signalling pathway in osteoporosis. Thereafter, the study is set out to delve into miR-497/LRG1/TGF-β1/Smads signalling pathway axis in osteoporosis. Osteoporosis bone tissues and normal bone tissues were collected. Rat osteoporosis models were constructed via ovariectomy. Model rats were injected with restored miR-497 or depleted LRG1 to explore their roles in osteoporosis. Rat osteoblasts were extracted from osteoporosis rats and transfected with restored miR-497 or depleted LRG1 for further verification. MiR-497 and LRG1 expression in femoral head tissues and osteoblasts of osteoporosis rats were detected. TGF-β1/Smads signalling pathway-related factors were detected. MiR-497 was poorly expressed while LRG1 was highly expressed and TGF-β1/Smads signalling pathway activation was inhibited in osteoporosis. MiR-497 up-regulation or LRG1 down-regulation activated TGF-β1/Smads signalling pathway, promoted collagen type 1 synthesis and suppressed oxidative stress in femoral head tissues in osteoporosis. MiR-497 restoration or LRG1 knockdown activated TGF-β1/Smads signalling pathway, promoted viability and suppressed apoptosis of osteoblasts in osteoporosis. Our study suggests that miR-497 up-regulation or LRG1 down-regulation promotes osteoblast viability and collagen synthesis via activating TGF-β1/Smads signalling pathway, which may provide a novel reference for osteoporosis treatment.
Author supplied keywords
Cite
CITATION STYLE
Gu, Z. T., Xie, D. H., Huang, C. Q., Ding, R., Zhang, R. K., Li, Q. C., … Qiu, Y. Y. (2020). MicroRNA-497 elevation or LRG1 knockdown promotes osteoblast proliferation and collagen synthesis in osteoporosis via TGF-β1/Smads signalling pathway. Journal of Cellular and Molecular Medicine, 24(21), 12619–12632. https://doi.org/10.1111/jcmm.15826
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.