Investigating the Role of Metal Ions in the Catalytic Mechanism of the Yeast RNA Triphosphatase

12Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Saccharomyces cerevisiae RNA triphosphatase (Cet1) requires the presence of metal ion cofactors to catalyze its phosphohydrolase activity, the first step in the formation of the 5′-terminal cap structure of mRNAs. We have used endogenous tryptophan fluorescence studies to elucidate both the nature and the role(s) of the metal ions in the Cet1-mediated phosphohydrolase reaction. The association of Mg2+, Mn2+, and Co 2+ ions with the enzyme resulted in a decrease in the intensity of the tryptophan emission spectrum. This decrease was then used to determine the apparent dissociation constants for these ions. Subsequent dual ligand titration experiments demonstrated that the metal ions bind to a common site, for which they compete. The kinetics of real-time metal ion binding to the Cet1 protein were also investigated, and the effects on RNA and nucleotide binding were evaluated. To provide additional insight into the relationship between Cet1 structure and metal ion binding, we correlated the effect of ion binding on protein structure using both circular dichroism and guanidium hydrochloride-induced denaturation as structural indicators. Our data indicate that binding of RNA, nucleotides, and metal ion cofactors does not lead to significant structural modifications of the Cet1 architecture. This suggests a model in which Cet1 possesses a preformed active site, and where major domain rearrangements are not required to form an active catalytic site. Finally, denaturation studies demonstrate that the metal ion cofactors can act by stabilizing the ground state binding of the phosphohydrolase substrate.

Cite

CITATION STYLE

APA

Bisaillon, M., & Bougie, I. (2003). Investigating the Role of Metal Ions in the Catalytic Mechanism of the Yeast RNA Triphosphatase. Journal of Biological Chemistry, 278(36), 33963–33971. https://doi.org/10.1074/jbc.M303007200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free