Due to the great potential to improve catalytic performance, gold (Au) and palladium (Pd) bimetallic catalysts have prompted structure-controlled synthesis of Au-Pd nanoalloys bounded by high-index facets. In this work, we prepared Au-Pd bimetallic nanoflowers (NFs) with a uniform size, well-defined dendritic morphology, and homogeneous alloy structure in an aqueous solution by seed-mediated synthesis. The prepared bimetallic NFs were fully characterized using a combination of transmission electron microscopy, Ultraviolet-Visible (UV-vis) spectroscopy, inductively coupled plasma optical emission spectroscopy, and cyclic voltammetry measurements. The catalytic activities of the prepared Au-Pd nanoparticles for 4-nitrophenol reduction were also investigated, and the activities are in the order of Au@Pd NFs > Au-Pd NFs (Au1 Pd1 core) > Au-Pd NFs (Au core), which could be related to the content and exposed different reactive surfaces of Pd in alloys. This result clearly demonstrates that the superior activities of Au-Pd alloy nanodendrites could be attributed to the synergy between Au and Pd in catalysts.
CITATION STYLE
Ma, T., Liang, F., Chen, R., Liu, S., & Zhang, H. (2017). Synthesis of Au-Pd bimetallic nanoflowers for catalytic reduction of 4-nitrophenol. Nanomaterials, 7(9). https://doi.org/10.3390/nano7090239
Mendeley helps you to discover research relevant for your work.