Sound-assisted fluidization for temperature swing adsorption and calcium looping: A review

53Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

Fine/ultra-fine cohesive powders find application in different industrial and chemical sectors. For example, they are considered in the framework of the Carbon Capture and Storage (CCS), for the reduction of the carbon dioxide emissions to the atmosphere, and in the framework of the thermochemical energy storage (TCES) in concentrated solar power (CSP) plants. Therefore, developing of technologies able to handle/process big amounts of these materials is of great importance. In this context, the sound-assisted fluidized bed reactor (SAFB) designed and set-up in Naples represents a useful device to study the behavior of cohesive powders also in the framework of low and high temperature chemical processes, such as CO2 adsorption and Ca-looping. The present manuscript reviews the main results obtained so far using the SAFB. More specifically, the role played by the acoustic perturbation and its effect on the fluid dynamics of the system and on the performances/outcomes of the specific chemical processes are pointed out.

Cite

CITATION STYLE

APA

Raganati, F., & Ammendola, P. (2021, January 1). Sound-assisted fluidization for temperature swing adsorption and calcium looping: A review. Materials. MDPI AG. https://doi.org/10.3390/ma14030672

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free