Complex Membrane Channel Blockade: A Unifying Hypothesis for the Prodromal and Acute Neuropsychiatric Sequelae Resulting from Exposure to the Antimalarial Drug Mefloquine

10Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The alkaloid toxin quinine and its derivative compounds have been used for many centuries as effective medications for the prevention and treatment of malaria. More recently, synthetic derivatives, such as the quinoline derivative mefloquine (bis(trifluoromethyl)-(2-piperidyl)-4-quinolinemethanol), have been widely used to combat disease caused by chloroquine-resistant strains of the malaria parasite, Plasmodium falciparum. However, the parent compound quinine, as well as its more recent counterparts, suffers from an incidence of adverse neuropsychiatric side effects ranging from mild mood disturbances and anxiety to hallucinations, seizures, and psychosis. This review considers how the pharmacology, cellular neurobiology, and membrane channel kinetics of mefloquine could lead to the significant and sometimes life-threatening neurotoxicity associated with mefloquine exposure. A key role for mefloquine blockade of ATP-sensitive potassium channels and connexins in the substantia nigra is considered as a unifying hypothesis for the pathogenesis of severe neuropsychiatric events after mefloquine exposure in humans.

Cite

CITATION STYLE

APA

Quinn, J. C. (2015). Complex Membrane Channel Blockade: A Unifying Hypothesis for the Prodromal and Acute Neuropsychiatric Sequelae Resulting from Exposure to the Antimalarial Drug Mefloquine. Journal of Parasitology Research. Hindawi Publishing Corporation. https://doi.org/10.1155/2015/368064

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free