Electromechanical properties of Ce-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics

50Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

Lead-free piezoceramics based on the (Ba, Ca)(Zr, Ti)O3 (BCZT) system exhibit excellent electromechanical properties for low-temperature actuation applications, but suffer from relatively high processing temperatures. Here we demonstrate an approach for the reduction of the sintering temperature and simultaneous increase of the electromechanical strain response of (Ba, Ca)(Zr, Ti)O3 piezoceramics by aliovalent doping with Ce. The samples were prepared by solid state synthesis and their crystallographic structure, dielectric, ferroelectric, and electromechanical properties were investigated. The highest d*33 value of 1189 pm/V was obtained for the sample with 0.05 mol% Ce, substituted on the A-site of the perovskite lattice. The results indicate a large potential of these materials for off-resonance piezoelectric actuators.

Cite

CITATION STYLE

APA

Hayati, R., Bahrevar, M. A., Ganjkhanlou, Y., Rojas, V., & Koruza, J. (2019). Electromechanical properties of Ce-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics. Journal of Advanced Ceramics, 8(2), 186–195. https://doi.org/10.1007/s40145-018-0304-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free