Formation of the ∼350-kDa Apg12-Apg5·Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast

389Citations
Citations of this article
283Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Autophagy, responsible for the delivery of cytoplasmic components to the lysosome/vacuole for degradation, is the major degradative pathway in eukaryotic cells. This process requires a ubiquitin-like protein conjugation system, in which Apg12 is covalently bound to Apg5. In the yeast Saccharomyces cerevisiae, the Apg12-Apg5 conjugate further interacts with a small coiled-coil protein, Apg16. The Apg12-Apg5 and Apg16 are localized in the cytosol and pre-autophagosomal structures and play an essential role in autophagosome formation. Here we show that the Apg12-Apg5 conjugate and Apg16 form a ∼350-kDa complex in the cytosol. Because Apg16 was suggested to form a homo-oligomer, we generated an in vivo system that allowed us to control the oligomerization state of Apg16. With this system, we demonstrated that formation of the ∼350-kDa complex and autophagic activity depended on the oligomerization state of Apg16. These results suggest that the Apg12-Apg5 conjugate and Apg16 form a multimeric complex mediated by the Apg16 homo-oligomer, and formation of the ∼350-kDa complex is required for autophagy in yeast.

Cite

CITATION STYLE

APA

Kuma, A., Mizushima, N., Ishihara, N., & Ohsumi, Y. (2002). Formation of the ∼350-kDa Apg12-Apg5·Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. Journal of Biological Chemistry, 277(21), 18619–18625. https://doi.org/10.1074/jbc.M111889200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free