A data-driven method for energy consumption prediction and energy-efficient routing of electric vehicles in real-world conditions

136Citations
Citations of this article
204Readers
Mendeley users who have this article in their library.

Abstract

Limited driving range remains one of the barriers for widespread adoption of electric vehicles (EVs). To address the problem of range anxiety, this paper presents an energy consumption prediction method for EVs, designed for energy-efficient routing. This data-driven methodology combines real-world measured driving data with geographical and weather data to predict the consumption over any given road in a road network. The driving data are linked to the road network using geographic information system software that allows to separate trips into segments with similar road characteristics. The energy consumption over road segments is estimated using a multiple linear regression (MLR) model that links the energy consumption with microscopic driving parameters (such as speed and acceleration) and external parameters (such as temperature). A neural network (NN) is used to predict the unknown microscopic driving parameters over a segment prior to departure, given the road segment characteristics and weather conditions. The complete proposed model predicts the energy consumption with a mean absolute error (MAE) of 12-14% of the average trip consumption, of which 7-9% is caused by the energy consumption estimation of the MLR model. This method allows for prediction of energy consumption over any route in the road network prior to departure, and enables cost-optimization algorithms to calculate energy efficient routes. The data-driven approach has the advantage that the model can easily be updated over time with changing conditions.

Cite

CITATION STYLE

APA

De Cauwer, C., Verbeke, W., Coosemans, T., Faid, S., & Van Mierlo, J. (2017). A data-driven method for energy consumption prediction and energy-efficient routing of electric vehicles in real-world conditions. Energies, 10(5). https://doi.org/10.3390/en10050608

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free