Reactivity in the human retinal microvasculature measured during acute gas breathing provocations

34Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Although changes in vessel diameter following gas perturbation have been documented in retinal arterioles and venules, these responses have yet to be quantified in the smallest vessels of the human retina. Here, using in vivo adaptive optics, we imaged 3-25 μm diameter vessels of the human inner retinal circulation and monitored the effects of altered gas-breathing conditions. During isocapnic hyperoxia, definite constrictions were seen in 51% of vessel segments (mean ± SD for pre-capillary arterioles -9.5 ± 3.0%; capillaries -11.8 ± 3.3%; post-capillary venules -6.3 ± 2.8%); these are comparable with responses previously reported in larger vessels. During isoxic hypercapnia, definite dilations were seen in 47% of vessel segments (mean ± SD for pre-capillary arterioles +9.8 ± 1.5%; capillaries +13.7 ± 3.8%; post-capillary venules +7.5 ± 4.2%); these are proportionally greater than responses previously reported in larger vessels. The magnitude of these proportional changes implies that the capillary beds themselves play an important role in the retinal response to changes in carbon dioxide levels. Interestingly, the distribution of microvascular responses shown here differs from our previously reported responses to flicker stimulation, suggesting differences in the way blood supply is coordinated following gas perturbation and altered neural activity.

Cite

CITATION STYLE

APA

Duan, A., Bedggood, P. A., Metha, A. B., & Bui, B. V. (2017). Reactivity in the human retinal microvasculature measured during acute gas breathing provocations. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-02344-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free