Raindrop size distribution and rain characteristics of the 2017 great hunan flood observed with a parsivel2 disdrometer

1Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Disdrometer observations obtained by an OTT Parsivel2 during the 2017 Great Hunan Flood from 1:00 a.m. LST 23 June 2017 to 4:00 a.m. LST 2 July 2017 in Changsha, Hunan Province, southern China, are analyzed to diagnose characteristics of raindrop size distribution (DSD). This event was characterized by a large number of small-to medium-sized raindrops (diameters smaller than 1.5 mm) and the mean median volume diameter (D0) is about 1.04 mm. The median values of rain rate R (1.57 mm h−1), liquid water content W (0.10 g m−3), and radar reflectivity Z (25.7 dBZ) are smaller than that of the 2013 Great Colorado Flood. This event was composed of two intense rainfall periods and a stratiform period, and notable distinctions of rainfall microphysics among the three rainfall episodes are observed. Two intense rainfall periods were characterized by widespread and intense convection rains with a surface reflectivity of 48.8~56.7 dBZ. A maximum diameter of raindrops up to 7.5 mm was observed, as well as high concentrations of small and midsize drops, resulting in large rainfall amounts during the two intense rainfall episodes. The mean radar reflectivity of 22.6 dBZ, total rainfall of 17.85 mm and the maximum raindrop of approximately 4.25 mm were observed during the stratiform rainfall episode. The composite DSD for each rainfall episode peaked at 0.56 mm but higher concentrations of raindrops appeared in the two intense rainfall episodes. The Z-R relationships derived from the disdrometer measurements reflect the unusual characteristics of DSD during the flood. As a result, the standard NEXRAD Z-R relationship (Z = 300R1.4) strongly underestimated hourly rainfall by up to 27.5%. In addition, the empirical relations between rainfall kinetic energy (KE) versus rainfall intensity (R) and mean mass diameter (Dm) are also derived using DSDs to further investigate the impacts of raindrop properties on the rainfall erosivity.

Cite

CITATION STYLE

APA

Luo, L., Wang, L., Huo, T., Chen, M., Ma, J., Li, S., & Wu, J. (2021). Raindrop size distribution and rain characteristics of the 2017 great hunan flood observed with a parsivel2 disdrometer. Atmosphere, 12(12). https://doi.org/10.3390/atmos12121556

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free