Ultrasonic vibration facilitates the micro-formability of a Zr-based metallic glass

18Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Thermoplastic microforming not only breaks through the bottleneck in the manufacture of metallic glasses, but also offers alluring prospects in microengineering applications. The microformability of metallic glasses decreases with a reduction in the mold size owing to the interfacial size effect, which seriously hinders their large-scale applications. Here, ultrasonic vibration was introduced as an effective method to improve the microformability of metallic glasses, owing to its capabilities of improving the material flow and reducing the interfacial friction. The results reveal that the microformability of supercooled Zr 35 Ti 30 Cu 8.25 Be 26.75 metallic glasses is conspicuously enhanced by comparison with those under quasi-static loading. The more intriguing finding is that the microformability of the Zr-based metallic glasses can be further improved by tuning the amplitude of the ultrasonic vibration. The physical origin of the above scenario is understood, in depth, on the basis of ultrasonic vibration-assisted material flow, as demonstrated by the finite element method.

Cite

CITATION STYLE

APA

Han, G., Peng, Z., Xu, L., & Li, N. (2018). Ultrasonic vibration facilitates the micro-formability of a Zr-based metallic glass. Materials, 11(12). https://doi.org/10.3390/ma11122568

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free