Abstract
The role of formins in microtubules is not well understood. In this study, we have investigated the mechanism by which INF2, a formin mutated in degenerative renal and neurological hereditary disorders, controls microtubule acetylation. We found that silencing of INF2 in epithelial RPE-1 cells produced a dramatic drop in tubulin acetylation, increased the G-actin/F-actin ratio, and impaired myocardin-related transcription factor (MRTF)/serum response factor (SRF)- dependent transcription, which is known to be repressed by increased levels of G-actin. The effect on tubulin acetylation was caused by the almost complete absence of α-tubulin acetyltransferase 1 (α-TAT1) messenger RNA (mRNA). Activation of the MRTF-SRF transcriptional complex restored α-TAT1 mRNA levels and tubulin acetylation. Several functional MRTF-SRF-responsive elements were consistently identified in the α-TAT1 gene. The effect of INF2 silencing on microtubule acetylation was also observed in epithelial ECV304 cells, but not in Jurkat T cells. Therefore, the actin-MRTF-SRF circuit controls α-TAT1 transcription. INF2 regulates the circuit, and hence microtubule acetylation, in cell types where it has a prominent role in actin polymerization.
Cite
CITATION STYLE
Fernández-Barrera, J., Bernabé-Rubio, M., Casares-Arias, J., Rangel, L., Fernández-Martín, L., Correas, I., & Alonso, M. A. (2018). The actin-MRTF-SRF transcriptional circuit controls tubulin acetylation via α-TAT1 gene expression. Journal of Cell Biology, 217(3), 929–944. https://doi.org/10.1083/jcb.201702157
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.