In this paper, we propose an actor ensemble algorithm, named ACE, for continuous control with a deterministic policy in reinforcement learning. In ACE, we use actor ensemble (i.e., multiple actors) to search the global maxima of the critic. Besides the ensemble perspective, we also formulate ACE in the option framework by extending the option-critic architecture with deterministic intra-option policies, revealing a relationship between ensemble and options. Furthermore, we perform a look-ahead tree search with those actors and a learned value prediction model, resulting in a refined value estimation. We demonstrate a significant performance boost of ACE over DDPG and its variants in challenging physical robot simulators.
CITATION STYLE
Zhang, S., & Yao, H. (2019). ACE: An actor ensemble algorithm for continuous control with tree search. In 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 (pp. 5789–5796). AAAI Press. https://doi.org/10.1609/aaai.v33i01.33015789
Mendeley helps you to discover research relevant for your work.