Abstract
A modified phase-transfer-catalyst-assisted synthetic pathway was developed that widens the pool of accessible 1-substituted tetrazoles, which are possible ligands for iron(II) spin-crossover compounds. Within the family of α,ω-bis(tetrazol- 1-yl)alkanes, a series of ligands and their respective iron(II) spin-crossover compounds were synthesized and structurally and spectroscopically characterized in the past. The classical route to prepare these ligands is based on the respective amino-precursors. Hence the pool of accessible compounds is limited by the commercial or synthetical availability of α,ω-diaminoalkanes. Furthermore, the concomitant transformation to the tetrazole moieties turns out to be easier for diamino-alkanes with an even number of carbon atoms than for those with an odd number. In line with this observation, the shortest odd-numbered homologues such as 1,1-bis- (tetrazol-1-yl)methane (1ditz) and 1,3-bis(tetrazol-1-yl)propane (3ditz) were inaccessible so far. In this paper, we report the successful preparation and characterisation of the classically inaccessible 1,3-bis(tetrazol-1-yl)propane (3ditz) and of its spin-crossover complex [Fe(3ditz)3](BF 4)2, which features an abrupt and almost complete spin transition at T1/2 = 159 K. The single-crystal X-ray structure of the low-spin and the high-spin species is presented. The magnetic data are supported by variable-temperature IR, UV/Vis/NIR, and 57Fe Mössbauer spectra. © 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Author supplied keywords
Cite
CITATION STYLE
Müller, D., Knoll, C., Stöger, B., Artner, W., Reissner, M., & Weinberger, P. (2013). A modified synthetic pathway for the synthesis of so far inaccessible N1-functionalized tetrazole ligands - Synthesis and characterization of the 1D chain-type spin crossover compound [Fe(3ditz)3](BF4) 2. European Journal of Inorganic Chemistry, (5–6), 984–991. https://doi.org/10.1002/ejic.201201062
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.