Degradability, cytocompatibility, and osteogenesis of porous scaffolds of nanobredigite and PCL–PEG–PCL composite

11Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Biocomposite scaffolds were fabricated by incorporation of nanobredigite (n–BD) into the polymer of poly(ɛ–caprolactone)–poly(ethyleneglycol)–poly(ɛ–caprolactone) (PCL–PEG–PCL). The results revealed that the addition of n–BD into PCL–PEG–PCL significantly improved water absorption, compressive strength, and degradability of the scaffolds of n–BD/PCL–PEG–PCL composite (n–BPC) compared with PCL–PEG–PCL scaffolds alone. In addition, the proliferation and alkaline phosphatase activity of MG63 cells cultured on n–BPC scaffolds were obviously higher than that cultured on PCL–PEG–PCL scaffolds. Moreover, the results of the histological evaluation from the animal model revealed that the n-BPC scaffolds significantly improved new bone formation compared with the PCL–PEG–PCL scaffolds, indicating good osteogenesis. The n–BPC scaffolds with good biocompatibility could stimulate cell proliferation, differentiation, and bone tissue regeneration and would be an excellent candidate for bone defect repair.

Cite

CITATION STYLE

APA

Hou, J., Fan, D., Zhao, L., Yu, B., Su, J., Wei, J., & Shin, J. W. (2016). Degradability, cytocompatibility, and osteogenesis of porous scaffolds of nanobredigite and PCL–PEG–PCL composite. International Journal of Nanomedicine, 11, 3545–3555. https://doi.org/10.2147/IJN.S97063

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free