Wireless sensor network consists of a large number of resource constrained sensor nodes. These sensor nodes communicate over wireless medium to perform a variety of information processing functionality. Due to broadcast nature of wireless medium, security is one of the major concerns and overlapping sensing range of sensor nodes results in redundancy in sensing data. Moreover, a large amount of energy is consumed by the base station to process these redundant data. To conserve energy and enhance the lifetime of sensor nodes, redundancy is eliminated at intermediate nodes by performing data aggregation. Wireless sensor networks are generally deployed in untrusted and hostile environments which results in compromised nodes. Thus, security and reliability of the transmitted data get reduced. Compromised nodes can inject false data, drop all the data, selectively forward data to an attacker, copy legal nodes to join routing paths, and disrupt data transmission during the data aggregation operation. In this paper, a novel scheme for data aggregation based on trust and reputation model is presented to ensure security and reliability of aggregated data. It will help to select secure paths from sensor nodes to the base station; thereby the accuracy of aggregated data will be increased significantly. Simulations show that the proposed protocol LDAT has less energy consumption and more accuracy as compared to some existing protocols which are based on functional reputation.
CITATION STYLE
Kumar, M., & Dutta, K. (2016). LDAT: LFTM based data aggregation and transmission protocol for wireless sensor networks. Journal of Trust Management, 3(1). https://doi.org/10.1186/s40493-016-0023-y
Mendeley helps you to discover research relevant for your work.