Phagocytes such as dendritic cells and macrophages, which are distributed in the small intestinal mucosa, play a crucial role in maintaining mucosal homeostasis by sampling the luminal gut microbiota. However, there is limited information regarding microbial uptake in a steady state. We investigated the composition of murine gut microbiota that is engulfed by phagocytes of specific subsets in the small intestinal lamina propria (SILP) and Peyer's patches (PP). Analysis of bacterial 16S rRNA gene amplicon sequences revealed that: 1) all the phagocyte subsets in the SILP primarily engulfed Lactobacillus (the most abundant microbe in the small intestine), whereas CD11bhi and CD11bhiCD11chi cell subsets in PP mostly engulfed segmented filamentous bacteria (indigenous bacteria in rodents that are reported to adhere to intestinal epithelial cells); and 2) among the Lactobacillus species engulfed by the SILP cell subsets, L. murinus was engulfed more frequently than L. taiwanensis, although both these Lactobacillus species were abundant in the small intestine under physiological conditions. These results suggest that small intestinal microbiota is selectively engulfed by phagocytes that localize in the adjacent intestinal mucosa in a steady state. These observations may provide insight into the crucial role of phagocytes in immune surveillance of the small intestinal mucosa.
CITATION STYLE
Morikawa, M., Tsujibe, S., Kiyoshima-Shibata, J., Watanabe, Y., Kato-Nagaoka, N., Shida, K., & Matsumoto, S. (2016). Microbiota of the small intestine is selectively engulfed by phagocytes of the lamina propria and peyer’s patches. PLoS ONE, 11(10). https://doi.org/10.1371/journal.pone.0163607
Mendeley helps you to discover research relevant for your work.