An Alzheimer's disease identification and classification model based on the convolutional neural network with attention mechanisms

6Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

MRI image analysis of brain regions based on deep learning can effectively reduce the workload of doctors in reading films and improve the accuracy of diagnosis. Therefore, deep learning models have great application prospects in the classification and prediction of Alzheimer's patients and normal people. However, the existing research has ignored the correlation between small abnormalities in local brain regions and changes in brain tissues. To this end, this paper studies an Alzheimer's disease identification and classification model based on the convolutional neural network (CNN) with attention mechanisms. In this paper, the attention mechanisms were introduced from the regional level and the feature level, and the information of brain MRI images was fused from multiple levels to find out the correlation between the slices in brain MRI images. Then, a spatio-temporal graph CNN with dual attention mechanisms was constructed, which made the network model more attentive to the salient channel features while eliminating the impact of certain noise features. The experimental results verified the effectiveness of the constructed model in identification and classification of Alzheimer's disease.

Cite

CITATION STYLE

APA

Chen, Y. (2021). An Alzheimer’s disease identification and classification model based on the convolutional neural network with attention mechanisms. Traitement Du Signal, 38(5), 1557–1564. https://doi.org/10.18280/ts.380533

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free