Discrete Green’s functions

  • McAllister G
  • Sabotka E
6Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Let G ( P ; Q ) G(P;Q) be the discrete Green’s function over a discrete h -convex region Ω \Omega of the plane; i.e., a ( P ) G x x ¯ ( P ; Q ) + c ( P ) G y y ¯ ( P ; Q ) = − δ ( P ; Q ) / h 2 a(P){G_{x\bar x}}(P;Q) + c(P){G_{y\bar y}}(P;Q) = - \delta (P;Q)/{h^2} for P ∈ Ω h , G ( P ; Q ) = 0 P \in {\Omega _h},G(P;Q) = 0 for P ∈ ∂ Ω h P \in \partial {\Omega _h} . Assume that a ( P ) a(P) and c ( P ) c(P) are Hölder continuous over Ω \Omega and positive. We show that | D ( m ) G ( P ; Q ) | ≦ A m / ρ P Q m |{D^{(m)}}G(P;Q)| \leqq {A_m}/\rho _{P\;Q}^m and | D ~ ( m ) G ( P ; Q ) | ≦ B m d ( Q ) / ρ P Q m + 1 |{\tilde D^{(m)}}G(P;Q)| \leqq {B_m}d(Q)/\rho _{P\;Q}^{m + 1} , where D ( m ) {D^{(m)}} is an m th order difference quotient with respect to the components of P or Q , and D ~ ( m ) {\tilde D^{(m)}} denotes an m th order difference quotient only with respect to the components of P .

Cite

CITATION STYLE

APA

McAllister, G. T., & Sabotka, E. F. (1973). Discrete Green’s functions. Mathematics of Computation, 27(121), 59–80. https://doi.org/10.1090/s0025-5718-1973-0341909-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free