Exposure to long chain polyunsaturated fatty acids triggers rapid multimerization of synucleins

253Citations
Citations of this article
159Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Detergent-stable multimers of α-synuclein have been found specifically in the brains of patients with Parkinson's disease and other neurodegenerative diseases. Here we show that recombinant α-synuclein forms multimers in vitro upon exposure to vesicles containing certain polyunsaturated fatty acid (PUFA) acyl groups, including arachidonoyl and docosahexaenoyl. This process occurs at physiological concentrations and much faster than in aqueous solution. PUFA-induced aggregation involves physical association with the vesicle surface via the large apolipoprotein-like lipid-binding domain that constitutes the majority of the protein, β- and γ-synucleins, as well as the Parkinson's disease-associated α-synuclein variants A30P and A53T, show similar tendencies to multimerize in the presence of PUFAs. Multimerization does not require the presence of any tyrosine residues in the sequence. The membrane-based interaction of the synucleins with specific long chain polyunsaturated phospholipids may be relevant to the protein family's physiological functions and may also contribute to the aggregation of α-synuclein observed in neurodegenerative disease. © 2001 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Perrin, R. J., Woods, W. S., Clayton, D. F., & George, J. M. (2001). Exposure to long chain polyunsaturated fatty acids triggers rapid multimerization of synucleins. Journal of Biological Chemistry, 276(45), 41958–41962. https://doi.org/10.1074/jbc.m105022200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free