Thin-walled double side freeform component milling process with paraffin filling method

6Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

The machining of thin-walled double side freeform component has many challenges in terms of the geometrical complexity, high-requirement accuracy, and especially low stiffness. This paper surveys the filling method during the milling processes of thin-walled double side freeform component. Firstly, the DEFORM-3D was used to analyze and calculate the surface residual stress which provides a theoretical basis for parameters selection of the rough milling process, and the optimal milling parameters were obtained by the Taguchi method. Residual stress measurements have been carried out to verify the simulation results. The results show the difference between simulation and experimental data is less than 15%. Secondly, semi-finishing parameters and finishing process parameters were determined by equal error step length and step distance method. Thirdly, two machining experiments were conducted with and without paraffin filling, and the accuracy was measured by coordinate measurement machine. The results shown that the PV values are 25.16 μm and 20.34 μm for the concave and convex surface, and the corresponding RMS values are 13.75 μm and 11.93 μm in the first milling experiment. The PV values have improved to 8.53 μm and 7.12 μm, and RMS values have improved to 2.45 μm and 3.05 μm by the filled method applied.

Cite

CITATION STYLE

APA

Zha, J., Chu, J., Li, Y., & Chen, Y. (2017). Thin-walled double side freeform component milling process with paraffin filling method. Micromachines, 8(11). https://doi.org/10.3390/mi8110332

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free