A Decision-Making Method Providing Sustainability to FPGA-Based SoCs by Run-Time Structural Adaptation to Mode of Operation, Power Budget, and Die Temperature Variations

0Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

One of the growing areas of application of embedded systems in robotics, aerospace, military, etc. is autonomous mobile systems. Usually, such embedded systems have multitask multimodal workloads. These systems must sustain the required performance of their dynamic workloads in presence of varying power budget due to rechargeable power sources, varying die temperature due to varying workloads and/or external temperature, and varying hardware resources due to occurrence of hardware faults. This paper proposes a run-time decision-making method, called Decision Space Explorer, for FPGA-based Systems-on-Chip (SoCs) to support changing workload requirements while simultaneously mitigating unpredictable variations in power budget, die temperature, and hardware resource constraints. It is based on the concept of Run-Time Structural Adaptation (RTSA); whenever there is a change in a system's set of constraints, Explorer selects a suitable hardware processing circuit for each active task at an appropriate operating frequency such that all the constraints are satisfied. Explorer has been experimentally deployed on the ARM Cortex-A9 core of Xilinx Zynq XC7Z020 SoC. Its worst-case decision-making time for different scenarios ranges from tens to hundreds of microseconds. Explorer is thus suitable for enabling RTSA in systems where specifications of multiple objectives must be maintained simultaneously, making them self-sustainable.

Cite

CITATION STYLE

APA

Sharma, D., & Kirischian, L. (2021). A Decision-Making Method Providing Sustainability to FPGA-Based SoCs by Run-Time Structural Adaptation to Mode of Operation, Power Budget, and Die Temperature Variations. International Journal of Reconfigurable Computing, 2021. https://doi.org/10.1155/2021/5512938

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free