Invited review: Phenotypes to genetically reduce greenhouse gas emissions in dairying

81Citations
Citations of this article
224Readers
Mendeley users who have this article in their library.

Abstract

Phenotypes have been reviewed to select for lower-emitting animals in order to decrease the environmental footprint of dairy cattle products. This includes direct selection for breath measurements, as well as indirect selection via indicator traits such as feed intake, milk spectral data, and rumen microbial communities. Many of these traits are expensive or difficult to record, or both, but with genomic selection, inclusion of methane emission as a breeding goal trait is feasible, even with a limited number of registrations. At present, methane emission is not included among breeding goals for dairy cattle worldwide. There is no incentive to include enteric methane in breeding goals, although global warming and the release of greenhouse gases is a much-debated political topic. However, if selection for reduced methane emission became a reality, there would be limited consensus as to which phenotype to select for: methane in liters per day or grams per day, methane in liters per kilogram of energy-corrected milk or dry matter intake, or a residual methane phenotype, where methane production is corrected for milk production and the weight of the cow. We have reviewed the advantages and disadvantages of these traits, and discuss the methods for selection and consequences for these phenotypes.

Cite

CITATION STYLE

APA

de Haas, Y., Pszczola, M., Soyeurt, H., Wall, E., & Lassen, J. (2017). Invited review: Phenotypes to genetically reduce greenhouse gas emissions in dairying. Journal of Dairy Science, 100(2), 855–870. https://doi.org/10.3168/jds.2016-11246

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free