Abstract
We update the predictions of the SU(2) baryon chiral perturbation theory for the dipole polarisabilities of the proton, $$\{ \alpha _{E1} , \, \beta _{M1}\}_p = \{ 11.2(0.7), \, 3.9(0.7)\} \times 10^{-4}$${αE1,βM1}p={11.2(0.7),3.9(0.7)}×10-4 fm$$^3$$3, and obtain the corresponding predictions for the quadrupole, dispersive, and spin polarisabilities: $$ \{ \alpha _{E2} , \, \beta _{M2} \}_p = \{ 17.3(3.9), \, -15.5(3.5)\} \times 10^{-4}$${αE2,βM2}p={17.3(3.9),-15.5(3.5)}×10-4 fm$$^5$$5, $$\{\alpha _{E1u } , \, \beta _{M1u }\}_p = \{ -1.3(1.0), \, 7.1(2.5)\} \times 10^{-4}$${αE1ν,βM1ν}p={-1.3(1.0),7.1(2.5)}×10-4 fm$$^5$$5, and $$ \{ \gamma _{E1E1} , \, \gamma _{M1M1}, \gamma _{E1M2} , \, \gamma _{M1E2} \}_p = \{ -3.3(0.8), \, 2.9(1.5),\, 0.2(0.2), 1.1(0.3) \} \times 10^{-4}$${γE1E1,γM1M1,γE1M2,γM1E2}p={-3.3(0.8),2.9(1.5),0.2(0.2),1.1(0.3)}×10-4 fm$$^4$$4. The results for the scalar polarisabilities are in significant disagreement with semi-empirical analyses based on dispersion relations; however, the results for the spin polarisabilities agree remarkably well. Results for proton Compton-scattering multipoles and polarised observables up to the Delta(1232) resonance region are presented too. The asymmetries $$\Sigma _3$$Σ3 and $$\Sigma _{2x}$$Σ2x reproduce the experimental data from LEGS and MAMI. Results for $${ \Sigma }_{2z}$$Σ2z agree with a recent sum rule evaluation in the forward kinematics. The asymmetry $${ \Sigma }_{1z}$$Σ1z near the pion production threshold shows a large sensitivity to chiral dynamics, but no data is available for this observable. We also provide the predictions for the polarisabilities of the neutron, the numerical values being $$\{ \alpha _{E1}, \, \beta _{M1}\}_n = \{ 13.7(3.1), \, 4.6(2.7)\} \times 10^{-4}$${αE1,βM1}n={13.7(3.1),4.6(2.7)}×10-4 fm$$^3$$3, $$ \{ \alpha _{E2}, \, \beta _{M2} \}_n = \{ 16.2(3.7), \, -15.8(3.6)\} \times 10^{-4}$${αE2,βM2}n={16.2(3.7),-15.8(3.6)}×10-4 fm$$^5$$5, $$\{\alpha _{E1u }, \, \beta _{M1u }\}_n = \{ 0.1(1.0), \, 7.2(2.5)\} \times 10^{-4}$${αE1ν,βM1ν}n={0.1(1.0),7.2(2.5)}×10-4 fm$$^5$$5, and $$ \{ \gamma _{E1E1}, \, \gamma _{M1M1},\, \gamma _{E1M2}, \, \gamma _{M1E2} \}_n = \{ -4.7(1.1), 2.9(1.5),\, 0.2(0.2),\, 1.6(0.4) \} \times 10^{-4}$${γE1E1,γM1M1,γE1M2,γM1E2}n={-4.7(1.1),2.9(1.5),0.2(0.2),1.6(0.4)}×10-4 fm$$^4$$4. The neutron dynamical polarisabilities and multipoles are examined too. We also discuss subtleties related to matching the dynamical and static polarisabilities.
Cite
CITATION STYLE
Lensky, V., McGovern, J. A., & Pascalutsa, V. (2015). Predictions of covariant chiral perturbation theory for nucleon polarisabilities and polarised Compton scattering. European Physical Journal C, 75(12), 1–28. https://doi.org/10.1140/epjc/s10052-015-3791-0
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.