The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5° globally, and around 1.5° at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeleton.
CITATION STYLE
Torricelli, D., Cortés, C., Lete, N., Bertelsen, Á., Gonzalez-Vargas, J. E., Del-Ama, A. J., … Pons, J. L. (2018). A subject-specific kinematic model to predict human motion in exoskeleton-assisted gait. Frontiers in Neurorobotics, 12(APR). https://doi.org/10.3389/fnbot.2018.00018
Mendeley helps you to discover research relevant for your work.