Robust Multimodal Remote Sensing Image Registration Based on Local Statistical Frequency Information

9Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Multimodal remote sensing image registration is a prerequisite for comprehensive application of remote sensing image data. However, inconsistent imaging environment and conditions often lead to obvious geometric deformations and significant contrast differences between multimodal remote sensing images, which makes the common feature extraction extremely difficult, resulting in their registration still being a challenging task. To address this issue, a robust local statistics-based registration framework is proposed, and the constructed descriptors are invariant to contrast changes and geometric transformations induced by imaging conditions. Firstly, maximum phase congruency of local frequency information is performed by optimizing the control parameters. Then, salient feature points are located according to the phase congruency response map. Subsequently, the geometric and contrast invariant descriptors are constructed based on a joint local frequency information map that combines Log-Gabor filter responses over multiple scales and orientations. Finally, image matching is achieved by finding the corresponding descriptors; image registration is further completed by calculating the transformation between the corresponding feature points. The proposed registration framework was evaluated on four different multimodal image datasets with varying degrees of contrast differences and geometric deformations. Experimental results demonstrated that our method outperformed several state-of-the-art methods in terms of robustness and precision, confirming its effectiveness.

Cite

CITATION STYLE

APA

Liu, X., Xue, J., Xu, X., Lu, Z., Liu, R., Zhao, B., … Miao, Q. (2022). Robust Multimodal Remote Sensing Image Registration Based on Local Statistical Frequency Information. Remote Sensing, 14(4). https://doi.org/10.3390/rs14041051

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free