Brain-derived neurotrophic factor (BDNF) promotes postnatal maturation of GABAergic inhibition in the cerebral and cerebellar cortices, and its expression and release are enhanced by neuronal activity, suggesting that it acts in a feedback manner to maintain a balance between excitation and inhibition during development. BDNF promotes differentiation of cerebellar, hippocampal, and neostriatal inhibitory neurons, but its effects on the dendritic development of neocortical inhibitory interneurons remain unknown. Here, we show that BDNF mediates depolarization-induced dendritic growth and branching in neocortical interneurons. To visualize inhibitory interneurons, we biolistically transfected organotypic cortical slice cultures from neonatal mice with green fluorescent protein (GFP) driven by the glutamic acid decarboxylase (GAD)67 promoter. Nearly all GAD67-GFP-expressing neurons were nonpyramidal, many contained GABA, and some expressed markers of neurochemically defined GABAergic subtypes, indicating that GAD67-GFP-expressing neurons were GABAergic. We traced dendritic trees from confocal images of the same GAD67-GFP-expressing neurons before and after a 5 d growth period, and quantified the change in total dendritic length (TDL) and total dendritic branch points (TDBPs) for each neuron. GAD67-GFP-expressing neurons growing in control medium exhibited a 20% increase in TDL, but in 200 ng/ml BDNF or 10 mM KCl, this increase nearly doubled and was accompanied by a significant increase in TDBPs. Blocking action potentials with TTX did not prevent the BDNF-induced growth, but antibodies against BDNF blocked the growth-promoting effect of KCl. We conclude that BDNF, released by neocortical pyramidal neurons in response to depolarization, enhances dendritic growth and branching in nearby inhibitory interneurons.
CITATION STYLE
Jin, X., Hu, H., Mathers, P. H., & Agmon, A. (2003). Brain-derived neurotrophic factor mediates activity-dependent dendritic growth in nonpyramidal neocortical interneurons in developing organotypic cultures. Journal of Neuroscience, 23(13), 5662–5673. https://doi.org/10.1523/jneurosci.23-13-05662.2003
Mendeley helps you to discover research relevant for your work.