scCancer2: data-driven in-depth annotations of the tumor microenvironment at single-level resolution

1Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Summary: Single-cell RNA-seq (scRNA-seq) is a powerful technique for decoding the complex cellular compositions in the tumor microenvironment (TME). As previous studies have defined many meaningful cell subtypes in several tumor types, there is a great need to computationally transfer these labels to new datasets. Also, different studies used different approaches or criteria to define the cell subtypes for the same major cell lineages. The relationships between the cell subtypes defined in different studies should be carefully evaluated. In this updated package scCancer2, designed for integrative tumor scRNA-seq data analysis, we developed a supervised machine learning framework to annotate TME cells with annotated cell subtypes from 15 scRNA-seq datasets with 594 samples in total. Based on the trained classifiers, we quantitatively constructed the similarity maps between the cell subtypes defined in different references by testing on all the 15 datasets. Secondly, to improve the identification of malignant cells, we designed a classifier by integrating large-scale pan-cancer TCGA bulk gene expression datasets and scRNA-seq datasets (10 cancer types, 175 samples, 663 857 cells). This classifier shows robust performances when no internal confidential reference cells are available. Thirdly, scCancer2 integrated a module to process the spatial transcriptomic data and analyze the spatial features of TME.

Cite

CITATION STYLE

APA

Chen, Z., Miao, Y., Tan, Z., Hu, Q., Wu, Y., Li, X., … Gu, J. (2024). scCancer2: data-driven in-depth annotations of the tumor microenvironment at single-level resolution. Bioinformatics, 40(2). https://doi.org/10.1093/bioinformatics/btae028

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free