Parathyroid hormone and parathyroid hormone-related peptide inhibit the apical Na+/TH+ exchanger NHE-3 isoform in renal cells (OK) via a dual signaling cascade involving protein kinase A and C

93Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHRP) interact with a common G protein-coupled receptor and stimulate production of diverse second messengers (i.e. cAMP, diacylglycerol, and inositol 1,4,5-trisphosphate) that varies depending on the target cell. In renal proximal tubule OK cells, PTH inhibits the activity of the apical membrane Na+/H+ exchanger, although it is unclear whether the signal is transmitted through protein kinase A (PKA) and/or protein kinase C (PKC). To delineate the signaling circuitry, a series of synthetic PTH and PTHRP fragments were used that stimulate the adenylate cyclase-cAMP-PKA and/or phospholipase C-diacylglycerol-PKC pathways. Human PTH-(1-34) and PTHRP-(1-34) stimulated adenylate cyclase and PKC activity, whereas the PTH analogues, PTH-(3-34), PTH-(28-42), and PTH-(28-48), selectively enhanced only PKC activity. However, each peptide fragment inhibited Na+/H+ exchanger activity by 40-50%, suggesting that PKC and possibly PKA were capable of transducing the PTH/PTHRP signal to the transporter. This was corroborated when forskolin and phorbol 12-myristate 13-acetate (PMA), direct agonists of adenylate cyclase and PKC, respectively, both inhibited the Na+/H+ exchanger. The specific PKA antagonist, H-89, abolished the forskolin-mediated suppression of Na+/H+ exchanger activity, but did not prevent the inhibitory effects of PTH-(1-34) or PMA. In comparison, the potent PKC inhibitor, chelerythrine chloride, prevented the inhibition of Na+/H+ exchanger activity mediated by PTH-(28-48) and PMA but did not avert the negative regulation caused by PTH-(1-34) or forskolin. However, inhibition of both PKA and PKC prevented PTH-(1-34)-mediated suppression of Na+/H+ exchanger activity, indicating that PTH-(1-34) acted through both signaling pathways. In addition, Northern blot analysis revealed the presence of only the NHE-3 isoform of the Na+/H+ exchanger in OK cells. In summary, these results demonstrated that NHE-3 is expressed in OK cells and that activation of the PTH receptor can stimulate both the PKA and PKC pathways, each of which can independently lead to inhibition of NHE-3 activity.

Cite

CITATION STYLE

APA

Azarani, A., Goltzman, D., & Orlowski, J. (1995). Parathyroid hormone and parathyroid hormone-related peptide inhibit the apical Na+/TH+ exchanger NHE-3 isoform in renal cells (OK) via a dual signaling cascade involving protein kinase A and C. Journal of Biological Chemistry, 270(34), 20004–20010. https://doi.org/10.1074/jbc.270.34.20004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free