We assume that dust near active galactic nuclei (AGN) is distributed in a torus-like geometry, which may be described by a clumpy medium or a homogeneous disk or as a combination of the two (i.e. a 2-phase medium). The dust particles considered are fluffy and have higher submillimeter emissivities than grains in the diffuse ISM. The dust-photon interaction is treated in a fully self-consistent three dimensional radiative transfer code. We provide an AGN library of spectral energy distributions (SEDs). Its purpose is to quickly obtain estimates of the basic parameters of the AGN, such as the intrinsic luminosity of the central source, the viewing angle, the inner radius, the volume filling factor and optical depth of the clouds, and the optical depth of the disk midplane, and to predict the flux at yet unobserved wavelengths. The procedure is simple and consists of finding an element in the library that matches the observations. We discuss the general properties of the models and in particular the 10mic. silicate band. The AGN library accounts well for the observed scatter of the feature strengths and wavelengths of the peak emission. AGN extinction curves are discussed and we find that there is no direct one-to-one link between the observed extinction and the wavelength dependence of the dust cross sections. We show that objects of the library cover the observed range of mid IR colors of known AGN. The validity of the approach is demonstrated by matching the SEDs of a number of representative objects: Four Seyferts and two quasars for which we present new Herschel photometry, two radio galaxies, and one hyperluminous infrared galaxy. Strikingly, for the five luminous objects we find pure AGN models fit the SED without a need to postulate starburst activity.
CITATION STYLE
Siebenmorgen, R., Heymann, F., & Efstathiou, A. (2015). Self-consistent two-phase AGN torus models. Astronomy & Astrophysics, 583, A120. https://doi.org/10.1051/0004-6361/201526034
Mendeley helps you to discover research relevant for your work.