Abstract
Timed degradation of the cyclin-dependent kinase inhibitor p27Kip1 by the E3 ubiquitin ligase F-box protein SKP2 is critical for T-cell progression into cell cycle, coordinating proliferation and differentiation processes. SKP2 expression is regulated by mitogenic stimuli and by Notch signaling, a key pathway in T-cell development and in T-cell acute lymphoblastic leukemia (T-ALL); however, it is not known whether SKP2 plays a role in the development of T-ALL. Here, we determined that SKP2 function is relevant for T-ALL leukemogenesis, whereas is dispensable for T-cell development. Targeted inhibition of SKP2 by genetic deletion or pharmacological blockade markedly inhibited proliferation of human T-ALL cells in vitro and antagonized disease in vivo in murine and xenograft leukemia models, with little effect on normal tissues. We also demonstrate a novel feed forward feedback loop by which Notch and IL-7 signaling cooperatively converge on SKP2 induction and cell cycle activation. These studies show that the Notch/SKP2/p27Kip1 pathway plays a unique role in T-ALL development and provide a proof-of-concept for the use of SKP2 as a new therapeutic target in T-cell acute lymphoblastic leukemia (T-ALL).
Cite
CITATION STYLE
Rodriguez, S., Abundis, C., Boccalatte, F., Mehrotra, P., Chiang, M. Y., Yui, M. A., … Carlesso, N. (2020). Therapeutic targeting of the E3 ubiquitin ligase SKP2 in T-ALL. Leukemia, 34(5), 1241–1252. https://doi.org/10.1038/s41375-019-0653-z
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.