Abstract
DNA/RNA helicases, which are enzymes for eliminating hydrogen bonds between bases of DNA/DNA, DNA/RNA, and RNA/RNA using the energy of ATP hydrolysis, contribute to various biological activities. In the present study, the Euryarchaeota-specific helicase EshA (TK0566) from the hyperthermophilic archaeon Thermococcus kodakarensis (Tk-EshA) was obtained as a recombinant form, and its enzymatic properties were examined. Tk-EshA exhibited maximal ATPase activity in the presence of RNA at 80°C. Unwinding activity was evaluated with various double-stranded DNAs (forked, 5' overhung, 3' overhung, and blunt end) at 50°C. Tk-EshA unwound forked and 3' overhung DNAs. These activities were expected to unwind the structured template and to peel offmisannealed primers when Tk-EshA was added to a PCR mixture. To examine the effect of Tk-EshA on PCR, various target DNAs were selected, and DNA synthesis was investigated. When 16S rRNA genes were used as a template, several misamplified products (noise DNAs) were detected in the absence of Tk-EshA. In contrast, noise DNAs were eliminated in the presence of Tk-EshA. Noise reduction by Tk-EshA was also confirmed when Taq DNA polymerase (a family A DNA polymerase, PolI type) and KOD DNA polymerase (a family B DNA polymerase, α type) were used for PCR. Misamplified bands were also eliminated during toxA gene amplification from Pseudomonas aeruginosa DNA, which possesses a high GC content (69%). Tk-EshA addition was more effective than increasing the annealing temperature to reduce misamplified DNAs during toxA amplification. Tk-EshA is a useful tool to reduce noise DNAs for accurate PCR.
Cite
CITATION STYLE
Fujiwara, A., Kawato, K., Kato, S., Yasukawa, K., Hidese, R., & Fujiwara, S. (2016). Application of a Euryarchaeota-specific helicase from Thermococcus kodakarensis for noise reduction in PCR. Applied and Environmental Microbiology, 82(10), 3022–3031. https://doi.org/10.1128/AEM.04116-15
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.