The promising immune checkpoint LAG-3: From tumor microenvironment to cancer immunotherapy

329Citations
Citations of this article
384Readers
Mendeley users who have this article in their library.

Abstract

Cancer immunotherapy and tumor microenvironment have been at the forefront of research over the past decades. Targeting immune checkpoints especially programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) has made a breakthrough in treating advanced malignancies. However, the low response rate brings a daunting challenge, changing the focus to dig deeply into the tumor microenvironment for alternative therapeutic targets. Strikingly, the inhibitory immune checkpoint lymphocyte activation gene-3 (LAG-3) holds considerable potential. LAG-3 suppresses T cells activation and cytokines secretion, thereby ensuring immune homeostasis. It exerts differential inhibitory impacts on various types of lymphocytes and shows a remarkable synergy with PD-1 to inhibit immune responses. Targeting LAG-3 immunotherapy is moving forward in active clinical trials, and combination immunotherapy of anti-LAG-3 and anti-PD-1 has shown exciting efficacy in fighting PD-1 resistance. Herein, we shed light on the significance of LAG-3 in the tumor microenvironment, highlight its role to regulate different lymphocytes, interplay with other immune checkpoints especially PD-1, and emphasize new advances in LAG-3-targeted immunotherapy.

Cite

CITATION STYLE

APA

Long, L., Zhang, X., Chen, F., Pan, Q., Phiphatwatchara, P., Zeng, Y., & Chen, H. (2018). The promising immune checkpoint LAG-3: From tumor microenvironment to cancer immunotherapy. Genes and Cancer, 9(5–6), 176–189. https://doi.org/10.18632/genesandcancer.180

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free