Effect of push-pull ruthenium complex adsorption conformation on the performance of dye sensitized solar cells

4Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

A new series of tris-(bipyridyl)ruthenium-like complexes based on the 4-tripheylamine-2,2':6',2''-terpyridine (TPA) push-pull ligand was prepared by incorporation of 4-carboxypyridine (cpy), 4,4'-dicarboxi-2,2'-bipyridine (dcbpy) and 4-carboxyterpyridine ligands (ctpy) ligands, in order to adsorb them on TiO2 in different anchoring conformations. The electron photoinjection and electron recombination processes of the respective dye-sensitized solar cells were greatly influenced by the molecular structure, which defined the surface concentration and surface charge on TiO2, such that the photoconversion efficiency was 10 times larger for [Ru(py)(dcbpy) (TPAtpy)] than for the [Ru(cpy)(bpy)(TPAtpy)](PF6) dye. Molecules anchoring in a more upright position and by a larger number of sites were shown to enhance the electron injection into TiO2 conduction band (CB) improving the short-circuit current (JSC), open circuit voltage (Voc) and the overall photoconversion efficiency. However, a positive net charge in the dye increased the back electron-transfer reactions and induced a decrease in both Voc and conversion efficiency.

Cite

CITATION STYLE

APA

Rosero, W. A. A., Guimaraes, R. R., Matias, T. A., & Araki, K. (2020). Effect of push-pull ruthenium complex adsorption conformation on the performance of dye sensitized solar cells. Journal of the Brazilian Chemical Society, 31(11), 2250–2264. https://doi.org/10.21577/0103-5053.20200077

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free