The general problem of quantum compiling is to approximate any unitary transformation that describes the quantum computation as a sequence of elements selected from a finite base of universal quantum gates. The Solovay-Kitaev theorem guarantees the existence of such an approximating sequence. Though, the solutions to the quantum compiling problem suffer from a tradeoff between the length of the sequences, the precompilation time, and the execution time. Traditional approaches are time-consuming, unsuitable to be employed during computation. Here, we propose a deep reinforcement learning method as an alternative strategy, which requires a single precompilation procedure to learn a general strategy to approximate single-qubit unitaries. We show that this approach reduces the overall execution time, improving the tradeoff between the length of the sequence and execution time, potentially allowing real-time operations.
CITATION STYLE
Moro, L., Paris, M. G. A., Restelli, M., & Prati, E. (2021). Quantum compiling by deep reinforcement learning. Communications Physics, 4(1). https://doi.org/10.1038/s42005-021-00684-3
Mendeley helps you to discover research relevant for your work.