Lumbar spine discs labeling using axial view MRI based on the pixels coordinate and gray level features

6Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Disc herniation is a major reason for lower back pain (LBP), a health issue that affects a very high proportion of the UK population and is costing the UK government over £1.3 million per day in health care cost. Currently, the process to diagnose the cause of LBP involves examining a large number of Magnetic Resonance Images (MRI) but this process is both expensive in terms time and effort. Automatic labeling of lumbar disc pixels in the MRI to detect the herniation area will reduce the time to diagnose and detect the cause of LBP by the physicians. In this paper, we present a method for automatic labeling of the lumbar spine disc pixels in axial view MRI using pixels locations and gray level as features. Clinical MRIs are used for the training and testing of the method. The pixel classification accuracy and the quality of the reconstructed disc images are used as the main performance indicators for our method. Our experiments show that high level of classification accuracy of 91.1% and 98.9% can be achieved using Weighted KNN and Fine Gaussian SVM classifiers respectively.

Cite

CITATION STYLE

APA

Al Kafri, A. S., Sudirman, S., Hussain, A. J., Fergus, P., Al-Jumeily, D., Al Smadi, H., … Mustafina, J. (2017). Lumbar spine discs labeling using axial view MRI based on the pixels coordinate and gray level features. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 10363 LNAI, pp. 107–116). Springer Verlag. https://doi.org/10.1007/978-3-319-63315-2_10

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free