Building and analyzing the robustness of interdependent transportation network for hazmat transporting network and the connected traffic network of hazmat transport

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Hazardous Materials Transportation Network (HMTN) has very tight coupling with Traffic Flow Network of Hazmat Transportation (TFNHT). We build the interdependent system for the two networks. One of them is the HMTN of Zhangjiagang City, another is generated with power-law parameters which is considered as TFNHT. One node from the HMTN is random failed as initial emergency failure. It has an impact on one dependent node from the TFNHT. The dependent node would give traffic pressure on connected nodes from the HMTN. In order to know the stability and robustness of each single network, we propose the Node Failure Rate (NFR) to show the percentage of non-function with iterations going on. The two variables in simulation are different average degrees of the TFNHT and initial failure of one random selecting node which belongs to the set of different degrees. In terms of the basic data and the simulation results, we found that (1) the high average degree of the TFNHT has more impact on the interdependent network than the low average degree of it. It means that high values of average degree can lead interdependent weakness and instability; (2) We suggest that the node of low degree should be considered as the part of hazmat transportation routes, and it reduces as far as possible selecting the nodes of high degree when we design the HMTN for improving the robustness; (3) In the interdependent transportation network, the HMTN is more stability than the connected TFNHT and the two networks have the same NFR rising trend.

Cite

CITATION STYLE

APA

Hu, P., Shuai, B., & Wu, Z. (2019). Building and analyzing the robustness of interdependent transportation network for hazmat transporting network and the connected traffic network of hazmat transport. In Lecture Notes in Electrical Engineering (Vol. 503, pp. 393–405). Springer Verlag. https://doi.org/10.1007/978-981-13-0302-9_39

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free