Spatiotemporal coherent modulation imaging for dynamic quantitative phase and amplitude microscopy

  • Zhang J
  • Yang D
  • Tao Y
  • et al.
6Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The single-shot capability of coherent modulation imaging (CMI) makes it have great potential in the investigation of dynamic processes. Its main disadvantage is the relatively low signal-to-noise ratio (SNR) which affects the spatial resolution and reconstruction accuracy. Here, we propose the improvement of a general spatiotemporal CMI method for imaging of dynamic processes. By making use of the redundant information in time-series reconstructions, the spatiotemporal CMI can achieve robust and fast reconstruction with higher SNR and spatial resolution. The method is validated by numerical simulations and optical experiments. We combine the CMI module with an optical microscope to achieve quantitative phase and amplitude reconstruction of dynamic biological processes. With the reconstructed complex field, we also demonstrate the 3D digital refocusing ability of the CMI microscope. With further development, we expect the spatiotemporal CMI method can be applied to study a range of dynamic phenomena.

Cite

CITATION STYLE

APA

Zhang, J., Yang, D., Tao, Y., Zhu, Y., Lv, W., Miao, D., … Shi, Y. (2021). Spatiotemporal coherent modulation imaging for dynamic quantitative phase and amplitude microscopy. Optics Express, 29(23), 38451. https://doi.org/10.1364/oe.434957

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free