Background. Double stranded RNA (dsRNA) is widely accepted as an RNA motif recognized as a danger signal by the cellular sentries. However, the biology of non-segmented negative strand RNA viruses, or Mononegavirales, is hardly compatible with the production of such dsRNA. Methodology and Principal Findings. During measles virus infection, the IFN-β gene transcription was found to be paralleled by the virus transcription, but not by the virus replication. Since the expression of every individual viral mRNA failed to activate the IFN-β gene, we postulated the involvement of the leader RNA, which is a small not capped and not polyadenylated RNA firstly transcribed by Mononegavirales. The measles virus leader RNA, synthesized both in vitro and in vivo, was efficient in inducing the IFN-β expression, provided that it was delivered into the cytosol as a 5′-trisphosphate ended RNA. The use of a human cell line expressing a debilitated RIG-I molecule, together with overexpression studies of wild type RIG-I, showed that the IFN-β induction by virus infection or by leader RNA required RIG-I to be functional. RIG-I binds to leader RNA independently from being 5′-trisphosphate ended; while a point mutant, Q299A, predicted to establish contacts with the RNA, fails to bind to leader RNA. Since the 5′-triphosphate is required for optimal RIG-I activation but not for leader RNA binding, our data support that RIG-I is activated upon recognition of the 5′-triphosphate RNA end. Conclusions/Significance. RIG-I is proposed to recognize Mononegavirales transcription, which occurs in the cytosol, while scanning cytosolic RNAs, and to trigger an IFN response when encountering a free 5′-triphosphate RNA resulting from a mislocated transcription activity, which is therefore considered as the hallmark of a foreign invader. © 2007 Plumer et al.
CITATION STYLE
Plumet, S., Herschke, F., Bourhis, J. M., Valentin, H., Longhl, S., & Gerlier, D. (2007). Cytosolic 5′-triphosphate ended viral leader transcript of measles virus as activator of the RIG I-mediated interferon response. PLoS ONE, 2(3). https://doi.org/10.1371/journal.pone.0000279
Mendeley helps you to discover research relevant for your work.