Effect of ischemia on capillary pressure and equivalent pore radius in capillaries of the isolated dog hind limb

33Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Measurements were made of filtration coefficients (Lp), area per unit path length (A/Δx), and equivalent pore radius (rp) in the control state and following severe ischemia (arrested blood flow) for periods of 30 min, 1 hr, and 3 hr. The value of As/Δx for diffusion of all lipid insoluble substances was not changed after 30 min of ischemia, but it was increased after 1 and 3 hr of ischemia. The value of rp calculated from the theory of restricted diffusion yielded values of 34 to 35 Å for both the control period and after all three periods of ischemia. Combination of hydrodynamic data (Lp) and diffusion data (Aw/Δx) yielded values for rp of 23 Å for control and ischemia periods. Measurements of plasma protein osmotic pressure, tissue protein osmotic pressure, tissue hydrostatic pressure, and capillary hydrostatic pressure supported the conclusion that extended periods of arrested blood flow did not affect muscle capillary membrane porosity. In 5 of 16 hind limbs, there appeared to be a porosity change following 3 hr of arrested blood flow. This change was demonstrated by a net decrease in plasma protein osmotic pressure and an increase in rp from 34 Å to 54 Å. Lp was not changed after 30 min but was increased after 1 hr of ischemia; the increase was associated solely with an increase in capillary surface area. After 3 hr of ischemia, the primary change in 11 of 16 hind limbs was an increase in capillary surface area, although an increase in the size of the pores per unit membrane area could not be rigorously excluded. In 5 hind limbs after 3 hr of ischemia, an increase in rp was the primary change and an increase in capillary surface was of secondary importance. The data indicate that the edema which occurs subsequent to reperfusion of the vasculature after moderately long periods of severe ischemia results from an increase in capillary hydrostatic pressure augmented by an increase in capillary surface area not associated with an increase in membrane porosity. The rise in capillary pressure for any given arterial or venous pressure involves a decrease in precapillary resistance, but postcapillary resistance does not change for any given flow.

Cite

CITATION STYLE

APA

Diana, J. N., & Laughlin, M. H. (1974). Effect of ischemia on capillary pressure and equivalent pore radius in capillaries of the isolated dog hind limb. Circulation Research, 35(1), 77–101. https://doi.org/10.1161/01.RES.35.1.77

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free