The metallic Fe(ii) ion and nonmetallic S codoped g-C3N4 photocatalyst was synthesized through the polymerization of melamine, ferrous chloride and trithiocyanuric acid (TCA) at elevated temperature. The performance of Fe(ii)-S codoped g-C3N4 compounds in RhB photocatalytic degradation was found to increase 5 times. This significant enhancement in catalytic activity is probably related to the enhanced visible light adsorption and the mobility of photoinduced electron/hole pairs, attributable to bandgap narrowing and also lowering in the surface electrostatic potential compared to that of the pure g-C3N4 nanosheets. XRD and XPS results indicate that the Fe species binds with N-atoms to form Fe-N bonds in the state of Fe(ii) ions. Fe(ii) doping increases the specific surface area, and enhances the photoinduced electron/hole pairs illustrated by PL, EIS spectra and transient photocurrent response measurements. The theoretical results show that divalent Fe(ii) ions coordinating in the pore centre among three triazine units form discrete dopant bands and S dopants substituting the N in triazine skeletons excite much stronger delocalized HOMO and LUMO states, facilitating the migration of photogenerated charge carriers, thus enhancing the visible-light driven photocatalytic performance.
CITATION STYLE
Dou, H., Zheng, S., & Zhang, Y. (2018). The effect of metallic Fe(II) and nonmetallic S codoping on the photocatalytic performance of graphitic carbon nitride. RSC Advances, 8(14), 7558–7568. https://doi.org/10.1039/c8ra00056e
Mendeley helps you to discover research relevant for your work.