Magnetic-Field-Switchable Laser via Optical Pumping of Rubrene

12Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Volumetric optical imaging of magnetic fields is challenging with existing magneto-optical materials, motivating the search for dyes with strong magnetic field interactions, distinct emission spectra, and an ability to withstand high photon flux and incorporation within samples. Here, the magnetic field effect on singlet-exciton fission is exploited to demonstrate spatial imaging of magnetic fields in a thin film of rubrene. Doping rubrene with the high-quantum yield dye dibenzotetraphenylperiflanthene (DBP) is shown to enable optically pumped, slab waveguide lasing. This laser is magnetic-field-switchable: when operated just below the lasing threshold, application of a 0.4 T magnetic field switches the device between nonlasing and lasing modes, accompanied by an intensity modulation of +360%. This is thought to be the first demonstration of a magnetically switchable laser, as well as the largest magnetically induced change in emission brightness in a singlet-fission material to date. These results demonstrate that singlet-fission materials are promising materials for magnetic sensing applications and could inspire a new class of magneto-optical modulators.

Cite

CITATION STYLE

APA

Perkinson, C. F., Einzinger, M., Finley, J., Bawendi, M. G., & Baldo, M. A. (2022). Magnetic-Field-Switchable Laser via Optical Pumping of Rubrene. Advanced Materials, 34(4). https://doi.org/10.1002/adma.202103870

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free