Probabilistic Discriminative Models Address the Tactile Perceptual Aliasing Problem

1Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this paper, our aim is to highlight Tactile Perceptual Aliasing as a problem when using deep neural networks and other discriminative models. Perceptual aliasing will arise wherever a physical variable extracted from tactile data is subject to ambiguity between stimuli that are physically distinct. Here we address this problem using a probabilistic discriminative model implemented as a 5-component mixture density network comprised of a deep neural network that predicts the parameters of a Gaussian mixture model. We show that discriminative regression models such as deep neural networks and Gaussian process regression perform poorly on aliased data, only making accurate predictions when the sources of aliasing are removed. In contrast, the mixture density network identifies aliased data with improved prediction accuracy. The uncertain predictions of the model form patterns that are consistent with the various sources of perceptual ambiguity. In our view, perceptual aliasing will become an unavoidable issue for robot touch as the field progresses to training robots that act in uncertain and unstructured environments, such as with deep reinforcement learning.

Cite

CITATION STYLE

APA

Lloyd, J., Lin, Y., & Lepora, N. F. (2021). Probabilistic Discriminative Models Address the Tactile Perceptual Aliasing Problem. In Robotics: Science and Systems. Massachusetts Institute of Technology. https://doi.org/10.15607/RSS.2021.XVII.057

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free