Abstract
Xylanase is a major enzyme used in the paper and pulp industries for bio-bleaching applications. There are possibilities for xylanase with better properties suitable for industrial applications. This paper focused on a potential xylanolytic fungus, Trichoderma viride VKF-3, obtained from a mangrove soil sample. Optimum conditions for xylanase production were tested by culturing T. viride VKF3 under varying carbon and nitrogen sources, medium pH, and incubation temperature. The isolate T. viride VKF3 achieved a maximum of 3.045 IU/mL of xylanase activity by utilizing coconut oil cake as a substrate. During purification, 84% yield was obtained with 40% ammonium sulphate. The enzyme activity was confirmed through zymogram analysis, and a band was observed at 14 kDa. The xylanase facilitated maximum hexenuronic acid release with a 30% enzyme dosage following 4 h of incubation. Moreover, the Kappa number tended to decrease with increased enzyme dosage and incubation time. There was a Δ brightness of 11% following 4 h of enzymatic treatment. Strength properties, such as the tensile, burst indices, and folding endurance, was improved during the xylanase assisted deinking of pulp. Hence, the present xylanase was found to be suitable for the bio-bleaching of newspaper waste via an eco-friendly process.
Author supplied keywords
Cite
CITATION STYLE
Nathan, V. K., Rani, M. E., Rathinasamy, G., & Dhiraviam, K. N. (2017). Low molecular weight xylanase from Trichoderma viride VKF3 for bio-bleaching of newspaper pulp. BioResources, 12(3), 5264–5278. https://doi.org/10.15376/biores.12.3.5264-5278
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.