Abstract
Exogenous osteoprotegerin (OPG) gene modification appears a therapeutic strategy for osteolytic aseptic loosening. The feasibility and efficacy of a cell-based OPG gene delivery approach were investigated using a murine model of knee prosthesis failure. A titanium pin was implanted into mouse proximal tibia to mimic a weight-bearing knee arthroplasty, followed by titanium particles challenge to induce periprosthetic osteolysis. Mouse fibroblast-like synoviocytes were transduced in vitro with either AAV-OPG or AAV-LacZ before transfused into the osteolytic prosthetic joint 3 weeks post surgery. Successful transgene expression at the local site was confirmed 4 weeks later after killing. Biomechanical pullout test indicated a significant restoration of implant stability after the cell-based OPG gene therapy. Histology revealed that inflammatory pseudo-membranes existed ubiquitously at bone-implant interface in control groups, whereas only observed sporadically in OPG gene-modified groups. Tartrate-resistant acid phosphataseosteoclasts and tumor necrosis factor α, interleukin-1Β, CD68 expressing cells were significantly reduced in periprosthetic tissues of OPG gene-modified mice. No transgene dissemination or tumorigenesis was detected in remote organs and tissues. Data suggest that cell-based ex vivo OPG gene therapy was comparable in efficacy with in vivo local gene transfer technique to deliver functional therapeutic OPG activities, effectively halted the debris-induced osteolysis and regained the implant stability in this model. © 2010 Macmillan Publishers Limited All rights reserved.
Author supplied keywords
Cite
CITATION STYLE
Zhang, L., Jia, T. H., Chong, A. C. M., Bai, L., Yu, H., Gong, W., … Yang, S. Y. (2010). Cell-based osteoprotegerin therapy for debris-induced aseptic prosthetic loosening on a murine model. Gene Therapy, 17(10), 1262–1269. https://doi.org/10.1038/gt.2010.64
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.