Host defense proteins derived from human saliva bind to Staphylococcus aureus

30Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Proteins in human saliva are thought to modulate bacterial colonization of the oral cavity. Yet, information is sparse on how salivary proteins interact with systemic pathogens that transiently or permanently colonize the oral environment. Staphylococcus aureus is a pathogen that frequently colonizes the oral cavity and can cause respiratory disease in hospitalized patients at risk. Here, we investigated salivary protein binding to this organism upon exposure to saliva as a first step toward understanding the mechanism by which the organism can colonize the oral cavity of vulnerable patients. By using fluorescently labeled saliva and proteomic techniques, we demonstrated selective binding of major salivary components by S. aureus to include DMBT1gp-340, mucin-7, secretory component, immunoglobulin A, immunoglobulin G, S100-A9, and lysozyme C. Biofilm-grown S. aureus strains bound fewer salivary components than in the planctonic state, particularly less salivary immunoglobulins. A corresponding adhesive component on the S. aureus surface responsible for binding salivary immunoglobulins was identified as staphylococcal protein A (SpA). However, SpA did not mediate binding of nonimmunoglobulin components, including mucin-7, indicating the involvement of additional bacterial surface adhesive components. These findings demonstrate that a limited number of salivary proteins, many of which are associated with various aspects of host defense, selectively bind to S. aureus and lead us to propose a possible role of saliva in colonization of the human mouth by this pathogen. © 2013, American Society for Microbiology.

Cite

CITATION STYLE

APA

Heo, S. M., Choi, K. S., Kazim, L. A., Reddy, M. S., Haase, E. M., Scannapieco, F. A., & Ruhl, S. (2013). Host defense proteins derived from human saliva bind to Staphylococcus aureus. Infection and Immunity, 81(4), 1364–1373. https://doi.org/10.1128/IAI.00825-12

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free